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Compilation

back-end assembly
(code generator) program

source
program

front-end optimizer
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* Front-end: depends on source programming language

changes infrequently
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* Optimizer: independent optimizations

changes infrequently
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* Back-end: depends on processor architecture

changes often: new architectures, new features, ...
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Building a Compiler

assembly

>ouree front-end optimizer *—>
P program

program

Nov 4, 2014

LLVM
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* Infrequent changes: front-end & optimizer
reuse state-of-the-art: LLVM, for example
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Building a Compiler

source back-end assembly
program (code generator) program

Nov 4, 2014

Unison
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* Infrequent changes: front-end & optimizer
reuse state-of-the-art: LLVM, for example

* Frequent changes: back-end
use flexible approach: Unison (project this talk is based on)

—
S
-




State-of-the-art

instruction

selection

X=Yy+z; ‘

add ro rl r2
mv $a6fo ro

* Code generation organized into stages

instruction selection,

Nov 4, 2014
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State-of-the-art

register

allocation

Nov 4, 2014

X — register rO
X=Yy+2Z ‘ y = memory (spill to stack)
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* Code generation organized into stages

instruction selection, register allocation,
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State-of-the-art

instruction
scheduling 5
S
X=Yy+7z Uu=v-—-w, X
=) :
U=V—W; X=VY+z; )
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* Code generation organized into stages
instruction selection, register allocation, instruction scheduling
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State-of-the-art

instruction register instruction

selection allocation scheduling

Nov 4, 2014

* Code generation organized into stages
stages are interdependent: no optimal order possible
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State-of-the-art

instruction instruction register

selection scheduling allocation
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* Code generation organized into stages
stages are interdependent: no optimal order possible
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* Example: instruction scheduling 5 register allocation

increased delay between instructions can increase throughput
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— registers used over longer time-spans
— more registers needed
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State-of-the-art

instruction register instruction

selection allocation scheduling

Nov 4, 2014

* Code generation organized into stages
stages are interdependent: no optimal order possible
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* Example: instruction scheduling 5 register allocation

put variables into fewer registers
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— more dependencies among instructions
— less opportunity for reordering instructions
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State-of-the-art

instruction instruction register

selection scheduling allocation
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* Code generation organized into stages
stages are interdependent: no optimal order possible
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* Stages use heuristic algorithms
for hard combinatorial problems (NP hard)
assumption: optimal solutions not possible anyway
difficult to take advantage of processor features
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error-prone when adapting to change
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State-of-the-art

instruction instruction register

selection scheduling allocation
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* Code generation organized into stages
stages are interdependent: no optimal order possible
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* Stages use heuristic algor
for hard combinatorial
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assumption: optim
difficult to take adva
error-prone when ada
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Rethinking: Unison Idea

* No more staging and heuristic algorithms!

many assumptions are decades old...

Nov 4, 2014

* Use state-of-the-art technology for solving combinatorial
optimization problems: constraint programming

tremendous progress in last two decades...
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* Generate and solve single model
captures all code generation tasks in unison
high-level of abstraction: based on processor description
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flexible: ideally, just change processor description
potentially optimal: tradeoff between decisions accurately reflected
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Unison Approach

instruction

selection

constraints
instruction

scheduling

register
allocation

constraints

Nov 4, 2014

constraints
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* Generate constraint model
based on input program and processor description

constraints for all code generation tasks
generate but not solve: simpler and more expressive
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Unison Approach

instruction
selection

off-the-shelf

constraint

instruction
solver

scheduling
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/[ / constraints

register
allocation
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* Off-the-shelf constraint solver solves constraint model

solution is assembly program
optimization takes inter-dependencies into account
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Constraint Programming

* Model problem
variables and possible values problem parameters
constraints legal value combinations

objective function solution cost or quality

Nov 4, 2014

* Modeling: turn problem into constraint model

high-level of abstraction
expressive and array of advanced modeling techniques available
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* Solving: find solution to constraint model
constraint propagation remove infeasible values

heuristic search simplify problem
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What Makes Constraint
Programming Work?

Essential: avoid search...
...as it always suffers from combinatorial explosion

Nov 4, 2014

Constraint propagation drastically reduces search space
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Efficient and powerful methods for propagation available
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When using search, use a clever heuristic

Array of modeling techniques available that reduce search
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Overview

* Approach

* Results

Nov 4, 2014

* Discussion
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Approach




Source Material

* Survey on Combinatorial Register Allocation and Instruction

Scheduling
Roberto Castafieda Lozano, Christian Schulte. CoRR entry, 2014.

* Combinatorial Spill Code Optimization and Ultimate

Coalescing

Roberto Castafieda Lozano, Mats Carlsson, Gabriel Hjort Blindell,
Christian Schulte. Languages, Compilers, Tools and Theory for
Embedded Systems, 2014.

* Constraint-based Register Allocation and Instruction
Scheduling

Roberto Castafieda Lozano, Mats Carlsson, Frej Drejhammar,
Christian Schulte. Eighteenth International Conference on Principles
and Practice of Constraint Programming, 2012.

Nov 4, 2014
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Input

int fac(int n) { t,<1i
int £ = 1; t,—slti ¢, ]
while (n > 9) { bne t, tg—mul t,,t, E
f =Ff * n; n--; > ty—subiu t &
} bgtz t, s
return f; *
} [ Jr tie
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* Function is unit of compilation
generate code for one function at a time

* Instruction selection has already been performed
some instructions might depend on register allocation [later]
* Use control flow graph (CFG) and turn it into LSSA form

edges = control flow
nodes = basic blocks (no control flow)
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Register Allocation

t, « mul t;, 2
t; < sub t;, 2
t, < add t,, t;
return t,

r2 < mul rl, 2
r3 < sub ri, 2
r4 < add r2, r3
return r4

r2z < mul ri, 2
ri < sub ri, 2
rli < add r2, ri
return ri

* Assign registers to program temporaries (variables)
infinite number of temporaries
finite number of registers

* Naive strategy: each temporary assigned a different register
will never work, way too few registers!

* Assign the same register to several temporaries

when is this safe?

what if there are not enough registers?

interference
spilling

Nov 4, 2014
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Static Single Assignment (SSA)

t,+1i
t,—slti t, ]
bne t, tg—mul t.,t, %
ty—subiu t, N
l bgtz t, 2
[ Jr tie é\
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* SSA: each temporary is defined (t < ...) once
* SSA simplifies many optimizations
* Instead of using ¢-functions we use ¢-congruences and LSSA

¢-functions disambiguate definitions of temporaries
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Liveness and Irgterference

— R

B

* Temporary is live when it might be still used
from its definition to use

Nov 4, 2014
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* Temporaries interfere if they are live simultaneously

this definition is naive [more later]

* Non-interfering temporaries can be assigned to same register
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Linear SSA (LSSA)

1_

t,—slti t,

bne t,
t=tp l
ty=t,

[ jr tie

ty—subiu t,
bgtz t,

te=1y
t=1s

* Linear live range of a temporary cannot span block boundaries
* Liveness across blocks defined by temporary congruence =
t=t! <& represent same original temporary

Nov 4, 2014
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Linear SSA (LSSA)

1_

t,-1i £t
t,eslti t, =0 I
bne ¢, tge—mul t,,t, te=t,
t.=t,, bgtz t,
[ Jr tie

* Linear live range of a temporary cannot span block boundaries
* Liveness across blocks defined by temporary congruence =
t=t! <& represent same original temporary

* Example: t;, t,, tg, t,, are congruent
correspond to the program variable f (factorial result)
not discussed: t, return address, t, first argument, t,; return value

Nov 4, 2014
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Linear SSA (LSSA)

1_

t,<1i
bne t, tge—mul t.,t, te=t, %
t=t,, ty—subiu t, t=t, %
t=t,, bgtz t, =
[ jr ti §

* Linear live range of a temporary cannot span block boundaries
* Liveness across blocks defined by temporary congruence =
t=t! <& represent same original temporary
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* Advantage
simple modeling for linear live ranges
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enables problem decomposition for solving




Spilling
* If not enough registers available: spill

* Spilling moves temporary to memory (stack)

store in memory after defined

Nov 4, 2014

load from memory before used
memory access typically considerably more expensive
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decision on spilling crucial for performance

* Architectures might have more than one register file

some instructions only capable of addressing a particular file
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“spilling” from one register bank to another
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Coalescing

* Temporaries d (“destination”) and s (“source”) are move-
related if
des
d and s should be coalesced (assigned to same register)

Nov 4, 2014

coalescing saves move instructions and registers
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* Coalescing is important
due to how registers are managed (calling convention, callee-save)
due to using LSSA for our model (congruence)
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Copy Operations

* Copy operations replicate a temporary t to a temporary t’

= {iy, iy oy i }
copy is implemented by one of the alternative instructions iy, i, ..., i,
instruction depends on where t and t’ are stored

similar to [Appel & George, 2001]

* Example MIPS32
t' < {move, sw, nop}t

t’ memory and t register:  sw spill
t’ register and t register: move move-related
t’ and t same register: nop coalescing

MIPS32: instructions can only be performed on registers

Nov 4, 2014
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Alternative Temporaries

* Program representation uses operands and alternative

temporaries
enable substitution of temporaries that hold the same value

Alternative temporaries realize ultimate coalescing
all temporaries which are copy-related can be coalesced

opposed to naive coalescing: temporaries which are not live at the
same time can be coalesced

Alternative temporaries enable spill code optimization
possibly reuse spilled temporary defined by load instruction

Significant impact on code quality

Nov 4, 2014
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Register Allocation Approach

* Local register allocation
perform register allocation per basic block
possible as temporaries are not shared among basic blocks

Nov 4, 2014

* Local register assignment as geometrical packing problem

take width of temporaries into account
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also known as “register packing”
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* Global register allocation
force temporaries into same registers across blocks
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Unified Register Array

registers memory registers

- »
« P <

ro rl r., mO0 ml

Nov 4, 2014
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unified register array

* Unified register array
limited number of registers for each register file
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memory is just another “register” file
unlimited number of memory “registers”
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Geometrical Interpretation

registers memory registers
r0 rl r., mO0 ml -
—
o S
) <
= 3
e) =2
<
o =
D <
?
o
M unified register array temporary t Z
(%]

* Temporary t is rectangle
width is 1 (occupies one register)
top = issue cycle of defining instruction (t < ...)
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bottom = last issue cycle of using instructions ( ... < t)
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Register Assignment

registers memory registers
ro rl r., mO0 ml
o
)
(@)
~
(@]
<
o
D
M unified register array temporary t

* Register assignment = geometric packing problem
find horizontal coordinates for all temporaries
such that no two rectangles for temporaries overlap

corresponds to a global constraint (no-overlap) with strong
propagation

Nov 4, 2014
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Register Packing

Nov 4, 2014
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* Temporaries might have different width width(t)
many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]
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Register Packing

AX BX CX width(t,)=1
AH AL BH BL CH CL

o width(t)=2
o <
(@] —
~ 2
2 >
o 3
6 v W|dth(t3)=l =
width(t,)=2 g

* Temporaries might have different width width(t) 3

many processors support access to register parts

Rethinking Code Generation

still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH
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Register Packing

AX BX CX - start(t,)=0 end(t,)=1  width(t,)=1
AH AL BH BL CH CL

start(t,)=0 end(t,)=2  width(t;)=2

o
% <>F
o | t, start(t;)=0 end(t;)=1  width(t;)=1 2
- start(t,)=1 end(t,)=2  width(t,)=2 §

* Temporaries might have different width width(t) 3

many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

Rethinking Code Generation

* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH
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Register Packing

AX BX CX start(t,)=0 end(t,)=1  width(t,)=1
AH AL BH BL CH CL
o - start(t,)=0 end(t,)=2  width(t;)=2
o t3 <
(@) -
~ 2 S
3 p
o | start(t;)=0 end(t;)=1  width(t;)=1 2
start(t,)=1 end(t,)=2  width(t,)=2 <
* Temporaries might have different width width(t) 3

many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]
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* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH
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Global Register Allocation

* Enforce that congruent temporaries are assigned to same
register

Nov 4, 2014

* If register pressure is low...

copy instructions might disappear (nop)
= coalescing
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* If register pressure is high...
copy instructions might be implemented by a move (move)
= no coalescing
copy instructions might be implemented by a load/store (1w, sw)
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Local Instruction Scheduling

in

1(t,)
1 :
t,e1i ‘.\‘1.(5)
t,—slti ¢, 1t i~  sltd s
bne t, 1(t,) 1 S~ L) o
1(t;) bne 3
.......... 2
out
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* Data and control dependencies
data, control, artificial (for making in and out first/last)
again ignored: t; return address, t, first argument
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* If instruction i depends on
issue distance of operation for j
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Limited Processor Resources

* Processor resources
functional units

<
data buses S
3
2
* Classical cumulative scheduling problem functional o
. 2=
units )
processor resource has capacity #units G
instructions occupy parts of resource 1 unit e
resource consumption can never exceed capacity £
corresponds to a global constraint (cumulative) with strong propagation <

* Also modeled as resources
instruction bundle width for VLIW processor
how many instructions can be issued simultaneously
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Code Quality
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Compared to LLVM 3.3 for Qualcomm’s Hexagon V4

7% mean improvement

Provably optimal (®) for 29% of functions
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Scalability
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number of instructions

* Quadratic average complexity up to 1000 instructions
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Optimizing for Size
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* 1% mean improvement

* Important: straightforward replacement of optimization
criterion
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Impact Alternative
Temporaries
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* 62% of functions become faster, none slower

* 2% mean improvement
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DISCUSSION



Related Approaches

Idea and motivation in Unison for combinatorial optimization
is absolutely not new!
starting in the early 1990s
[Castafieda Lozano & Schulte, Survey on Combinatorial Register
Allocation and Instruction Scheduling, CoRR, 2014]
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Common to pretty much all approaches: compilation unit is
basic block
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Approaches differ
which code generation tasks covered
which technology used (ILP, CLP, SAT, Stochastic Optimization, ...)
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Common challenge: robustness and scalability




Unique to Unison Approach

First global approach (function as compilation unit)

Constraint programming using global constraints
sweet spot: cumulative and no-overlap are state-of-the-art!
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Full register allocation with ultimate coalescing, packing,
spilling, and spill code optimization
spilling is internalized
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Robust at the expense of optimality
problem decomposition
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But: instruction selection not yet there!




